
Lesson 7. Big DPs and the Curse of Dimensionality

1 Solving a Rubik's cube

- In a classic Rubik's cube, each of the 6 faces is covered by 9 stickers
- Each sticker can be one of 6 colors: white, red, blue, orange, green and yellow

- Each face of the cube can be turned independently
 - Notation:

- The letter means turn the face clockwise 90°
 - ♦ For example, R means turn the right face clockwise 90°
- \circ The letter primed means turn the face counter-clockwise 90°
 - ♦ For example, R' means turn the right face counter-clockwise 90°
- The problem: given an initial configuration of the cube, find a *shortest* sequence of turns so that each face has only one color
 - $\circ~$ You may assume that you are allowed at most T turns
 - It turns out that any configuration can be solved in 26 turns or less: http://cube20.org/qtm/
- How can we formulate this problem as a dynamic program?

stages:								
states in stage	t (nodes):							
Decisions, tran	eitions a	nd raward	s/costs at a	stage t (ed	gas).			
Jecisions, tran	Sitions, ai		.5/ COSIS at 8	stage i (eu	ges).			
ource node:					Sink	node:		
hortest/longe	st path?							
Ainimum nun	nber of tu	rns requir	ed to solve	e the cube:				
Actual sequenc	e of turns	s that give	the minin	num numl	er of tur	ns to s	olve the cube	

2 Tetris

- You've all played Tetris before, right? Just in case...
- Tetris is a video game in which pieces fall down a 2D playing field, like this:

- Each piece is made up of four equally-sized bricks, and the playing field is 10 bricks wide and 20 bricks high
- As the pieces fall, the player can rotate them 90° in either direction, or move them left and right
- When a row is constructed without any holes, the player receives a point and the corresponding row is cleared
- The game is over once the height of bricks exceeds 20
- The problem: given a predetermined sequence of *T* pieces¹, determine how to place each piece in order to maximize the number of points accumulated over the course of the game
- How can we formulate this problem as a dynamic program?

¹Normally, the sequence of falling pieces is random and infinitely long. We'll consider this easier version here.

tages:			
tatas in staga t (nadas).			
tates in stage <i>t</i> (nodes):			
Decisions, transitions, and rewa	rds/costs at stage <i>t</i> (edge	es):	
ource node:		Sink node:	
hortest/longest path?			
Maximum number of points:			
Maximum number of points:			
Maximum number of points:	give the maximum	har of paints:	

3 Big DPs and the curse of dimensionality

How big are these DPs we just formulated?
• Tetris:
Number of states per stage:
Number of stages T
⇒ Number of nodes:
• Rubik's cube:
Number of states per stage:

• The number of states is huge for both these DPs!

 \circ Number of stages T

⇒ Number of nodes:

- ⇒ The DPs we formulated (as-is) are not solvable using today's computing power
- This is known as **the curse of dimensionality** in dynamic programming
- **Approximate dynamic programming** is an active area of research that tries to address the curse of dimensionality in various ways
 - For example, for Tetris: https://papers.nips.cc/paper/5190-approximate-dynamic-programming-finally-performs-well-in-the-game-of-tetris.pdf