
SA367 Mathematical Models for Decision Making Spring 2020 Uhan

Lesson 7. Big DPs and the Curse of Dimensionality

1 Solving a Rubik’s cube

● In a classic Rubik’s cube, each of the 6 faces is covered by 9 stickers

● Each sticker can be one of 6 colors: white, red, blue, orange, green and yellow

● Each face of the cube can be turned independently

○ Notation:

R L U D F B

○ _e letter means turn the face clockwise 90°

◇ For example, R means turn the right face clockwise 90°

○ _e letter primed means turn the face counter-clockwise 90°

◇ For example, R′ means turn the right face counter-clockwise 90°

● _e problem: given an initial conûguration of the cube, ûnd a shortest sequence of turns so that each face has
only one color

○ You may assume that you are allowed at most T turns

○ It turns out that any conûguration can be solved in 26 turns or less: http://cube20.org/qtm/

● How can we formulate this problem as a dynamic program?

1

http://cube20.org/qtm/

● Stages:

● States in stage t (nodes):

● Decisions, transitions, and rewards/costs at stage t (edges):

● Source node: Sink node:

● Shortest/longest path?

● Minimum number of turns required to solve the cube:

● Actual sequence of turns that give the minimum number of turns to solve the cube:

2

2 Tetris

● You’ve all played Tetris before, right? Just in case...

● Tetris is a video game in which pieces fall down a 2D playing ûeld, like this:

Tetris: A Study of Randomized Constraint Sampling 3

2 Stochastic Control and Tetris

Consider a discrete-time dynamic system which, at each time t, takes on a
state xt 2 S and takes as input an action at 2 Axt

. We assume that the state
space S is finite and that for each x 2 S, the set of actions Ax is finite. Let
pa(x, y) denote the probability that the next state is y given that the current
state is x and the current action is a.

A policy is a mapping ⇡ : S ! A from state to action. A cost function
g : S ⇥ A ! < assigns a cost g(x, a) to each state-action pair (x, a). We
pose as the objective to select a policy ⇡ that minimizes the expected sum of
discounted future costs:

E

" 1X

t=0

↵tg(xt, at)
���x0 = x, at = ⇡(xt)

#
, (1)

where ↵ 2 (0, 1) is the discount factor.
Tetris is a popular video game in which falling pieces are positioned by

rotation and translation as they fall onto a wall made up of previously fallen
pieces. Each piece is made up of four equally-sized bricks, and the Tetris
board is a two-dimensional grid, ten-bricks wide and twenty-bricks high. Each
piece takes on one of seven possible shapes. A point is received for each row
constructed without any holes, and the corresponding row is cleared. The
game terminates once the height of the wall exceeds 20. The objective is to
maximize the expected number of points accumulated over the course of the
game. A representative mid-game board configuration is illustrated in Figure
1.

Fig. 1. A representative Tetris board configurtaion

Indeed, Tetris can be formulated as a stochastic control problem:

• The state xt encodes the board configuration and the shape of the falling
piece.

• The action at encodes the rotation and translation applied to the falling
piece.

● Each piece is made up of four equally-sized bricks, and the playing ûeld is 10 bricks wide and 20 bricks high

● As the pieces fall, the player can rotate them 90° in either direction, or move them le� and right

● When a row is constructed without any holes, the player receives a point and the corresponding row is cleared

● _e game is over once the height of bricks exceeds 20

● _e problem: given a predetermined sequence of T pieces1, determine how to place each piece in order to
maximize the number of points accumulated over the course of the game

● How can we formulate this problem as a dynamic program?

1Normally, the sequence of falling pieces is random and inûnitely long. We’ll consider this easier version here.

3

● Stages:

● States in stage t (nodes):

● Decisions, transitions, and rewards/costs at stage t (edges):

● Source node: Sink node:

● Shortest/longest path?

● Maximum number of points:

● Actual placement of pieces that give the maximum number of points:

4

3 Big DPs and the curse of dimensionality

● How big are these DPs we just formulated?

● Tetris:

○ Number of states per stage:

○ Number of stages T

⇒ Number of nodes:

● Rubik’s cube:

○ Number of states per stage:

○ Number of stages T

⇒ Number of nodes:

● _e number of states is huge for both these DPs!

⇒ _e DPs we formulated (as-is) are not solvable using today’s computing power

● _is is known as the curse of dimensionality in dynamic programming

● Approximate dynamic programming is an active area of research that tries to address the curse of dimension-
ality in various ways

○ For example, for Tetris: https://papers.nips.cc/paper/5190-approximate-dynamic-programming-
finally-performs-well-in-the-game-of-tetris.pdf

5

https://papers.nips.cc/paper/5190-approximate-dynamic-programming-finally-performs-well-in-the-game-of-tetris.pdf
https://papers.nips.cc/paper/5190-approximate-dynamic-programming-finally-performs-well-in-the-game-of-tetris.pdf

	Solving a Rubik's cube
	Tetris
	Big DPs and the curse of dimensionality

